淺談模具力學性能的要求
2018/12/4 | 來自: admin
模具在使用過程中,其力學性能對于模具的使用來說起到非常重要的作用,因此我們需要對模具力學性能有一定的要求,我們常見的模具力學性能要求有:硬度、塑性、韌性、高溫磨損與抗氧化性能和常規力學性能五種,具體情況中華標準件網作出以下詳解。
1、塑性
淬硬的模具鋼塑性較差,尤其是冷變形模具鋼,在很小的塑性變形時即發生脆斷。衡量模具鋼塑性好壞,通常采用斷后伸長率和斷面收縮率兩個指標表示。
斷后伸長率是指拉伸試樣拉斷以后長度增加的相對百分數,以δ表示。斷后伸長率δ數值越大,表明鋼材塑性越好。熱模鋼的塑性明顯高于冷模鋼。
斷面收縮率是指拉伸試棒經拉伸變形和拉斷以后,斷裂部分截面的縮小量與原始截面之比,以ψ表示。塑性材料拉斷以后有明顯的縮頸,所以ψ值較大。而脆性材料拉斷后,截面幾乎沒有縮小,即沒有縮頸產生,ψ值很小,說明塑性很差。
2、韌性
韌性是模具鋼的一種重要性能指標,韌性決定了材料在沖擊試驗力作用下對破裂的抗斷能力。材料的韌性越高,脆斷的危險性越小,熱疲勞強度也越高。對于衡量模具脆斷傾向,沖擊韌度試驗具有重要意義。
沖擊韌度是指沖擊試樣缺口處截面積上的沖擊吸收功,而沖擊吸收功是指規定形狀和尺寸的試樣在沖擊試驗力一次作用下折斷時所吸收的功。沖擊試驗有夏比U形缺口沖擊試驗(試樣開成U形缺口)、夏比V形缺口沖擊試驗(試樣開成V形缺口)以及艾式沖擊試驗。
影響沖擊韌度的因素很多。不同材質的模具鋼沖擊韌度相差很大,即使同一種材料,因組織狀態不同、晶粒大小不同、內應力狀態不同沖擊韌度也不相同。通常是晶粒越粗大,碳化物偏析越嚴重(帶狀、網狀等),馬氏體組織越粗大等都會促使鋼材變脆。溫度不同,沖擊韌度也不相同。一般情況是溫度越高沖擊韌度值越高,而有的鋼常溫下韌性很好,當溫度下降到零下20~40℃時會變成脆性鋼。
為了提高鋼的韌性,必須采取合理的鍛造及熱處理工藝。鍛造時應使碳化物盡量打碎,并減少或消除碳化物偏析,熱處理淬火時防止晶粒過于長大,冷卻速度不要過高,以防內應力產生。模具使用前或使用過程中應采取一些措施減少內應力。
3、硬度
硬度表征了鋼對變形和接觸應力的抗力。測硬度的試樣易于制備,車間、試驗室一般都配備有硬度計,因此,硬度是很容易測定的一種性能,而且硬度與強度也有一定關系,可通過硬度強度換算關系得到材料硬度值。按硬度范圍劃定的模具類別,如高硬度(52~60HRC),一般用于冷作模具,中等硬度(40~52HRC),一般用于熱作模具。
鋼的硬度與成分和組織均有密切關系,通過熱處理,可以獲得很寬的硬度變化范圍。如新型模具鋼012Al和CG-2可分別采用低溫回火處理后硬度為60~62HRC,采用高溫回火處理后硬度為50~52HRC,因此可用來制作硬度要求不同的冷、熱作模具。因而這類模具鋼可稱為冷作、熱作兼用型模具鋼。
模具鋼中除馬氏體基體外,還存在更高硬度的其他相,如碳化物、金屬間化合物等。表l為常見碳化物及合金相的硬度值。
模具鋼的硬度主要取決于馬氏體中溶解的碳量(或含氮量),馬氏體中的含碳量取決于奧氏體化溫度和時間。當溫度和時間增加時,馬氏體中的含碳量增多馬氏體硬度會增加,但淬火加熱溫度過高會使奧氏體晶粒增大,淬火后殘留奧氏體量增多,又會導致硬度下降。因此,為選擇最佳淬火溫度,通常要先作出該鋼的淬火溫度—晶粒度—硬度關系曲線。
馬氏體中的含碳量在一定程度上與鋼的合金化程度有關,尤其當回火時表現更明顯。隨回火溫度的增高,馬氏體中的含碳量在減少,但當鋼中合金含量越高時,由于獼散的合金碳化物折出及殘留奧氏體向馬氏體的轉變,所發生的二次硬化效應越明顯,硬化峰值越高。
4、高溫磨損與抗氧化性能
高溫磨損是熱作模具主要失效形式之一,正常情況下,絕大多數錘鍛模及壓力機模具都因磨損而失效??篃崮p是對熱作模具的使用性能的要求,是多種高溫力學性能的綜合體現?,F在國內已有單位在自制的熱磨損機上進行模具熱磨損試驗,收到較理想的試驗效果。
實際使用表明,模具材料抗氧化性能的優劣,對模具使用壽命影響很大。因氧化會加劇模具工作過程中的磨損,導致模具型腔尺寸超差而報廢。氧化還會使模具表面產生腐蝕溝,成為熱疲勞裂紋起源.加劇模具熱疲勞裂紋的萌。
5、常規力學性能
模具材料的性能是由模具材料的成分和熱處理后的組織所決定的。模具鋼的基本組織是由馬氏體基體以及在基體上分布著的碳化物和金屬間化合物等構成。
模具鋼的性能應該滿足某種模具完成額定工作量所具備的性能,但因各類模具使用條件及所完成的額定工作量指標均不相同,故對模具性能要求也不同。又因為不同鋼的化學成分和組織對各種性能的影響不同,即使同一牌號的鋼也不可能同時獲得各種性能的最佳值,一般某些性能的改善會損失其他的性能。因而,模具工作者常根據模具工作條件及工作定額要求選用模具鋼及最佳處理工藝,使之達到主要性能最優,而其他性能損失最小的目的。